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SU( n) anomaly generating functionals: a toolkit for 
model builders 

H W Braden and D K Siegwart 
Department of Mathematical Sciences, University of Durham, Durham D H l  3LE, UK 

Received 11 July 1989 

Abstract. We give the functionals that yield the leading anomaly coefficients A(, , (A)  for 
SU(n) gauge groups subject to 2 c k n and representations A whose Young diagrams 
have less than seven boxes. This covers all widely used representations. Further we give 
an example indicating how to calculate beyond the stable range where k > n. 

1. Introduction 

The study of global properties of field theories has been much developed in the past 
decade (for a review see Alvarez-Gaum6 1985). In particular the massless spectrum 
of a theory and the not unrelated question of anomalies in the regularisation of the 
quantum theory have been widely investigated. The requirement of the absence of 
anomalies can provide a powerful constraint on the matter multiplets appearing in a 
gauge theory even if the gauge group is broken (see 't Hooft 1980 and Slansky 1981). 
A cdmmon approximation is to assume a pattern of symmetry breaking whereby only 
the massless modes of some initial theory survive to low energies at which stage some 
dynamical symmetry breaking gives them masses. The (initially) massless spectrum is 
that which is observed in present day experiments. Both of these properties become 
purely topological questions in the framework of the Euclidean path integral. 

The focus of this paper will be to provide results useful for analysing the anomaly 
structure of a gauge theory. Suppose we are interested in a 2d-dimensional gauge 
theory coupled to chiral fermions in a representation V(A) of the gauge group. In the 
evaluation of the chiral fermion determinants one encounters an expression Trv ( * )  F d + ' ,  
the trace of the gauge field strength in the representation V(A). This trace is related 
to traces and their powers of a fundamental representation V ( A j )  by 

TrV(*) Fd+'  = A(d+l) ( / \ )  TrvcA,,  Fd+'  fz' A,(A)(Trv(,,, Fkt)"l.  . . (TrvcA,)  FkT)rrr. (1.1) 
7r 

The sum in this formula is over partitions T = (/CBI, . . . , kF.) of d + 1 with s 3 2, the 
prime denoting we have separated off the s = 1 term T = ( d  + 1) for special attention. 
This term is known as the 'leading anomaly coefficient' and is that term relevant for 
calculating on a (Euclidean) spacetime with topology of the sphere, S2d. Summing 
A(d+,)(Ai)  over the fermion representations of the theory then gives the overall anomaly 
for this topology. Clearly other topologies are possible (and may be calculated for) 
but S2d is the simplest compactification of Wick rotated Minkowski space and so most 
often treated. In the following we let k = d + 1. 

0305-4470/90/050665+ 11%03.50 @ 1990 IOP Publishing Ltd 665 
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The aim of the present paper is to present a series of tables which give the leading 
anomaly coefficients A ( k ) ( A )  for an S U ( n )  gauge theory. Here A, is the n-dimensional 
representation and these coefficients are useful for discussing global (Witten 1982, 
Elitzur and Nair 1984, Braden 1988a) as well as perturbative anomalies. To facilitate 
use we will specify a representation by its corresponding Young diagram. For each 
such diagram, A(,,(A) is then a polynomial in k and n for which the reader can 
substitute as desired, subject only to 2 s k s n. For k = 1 these coefficients are zero 
because of the tracelessness of su( n )  and so throughout we will only consider k 3 2. 
For k > n this leading anomaly coefficient vanishes. 

One can understand the differences between the cases k si n and k > n that lead to 
this restriction in several ways. For 2 6  k s  n we have ( S U ( n ) )  = 2 and these 
groups correspond to the non-trivial Casimirs of SU(n) .  In the unstable range k >  n 
things rapidly become more complicated. We present the example of SU(3) to illustrate 
how one may calculate beyond this range if required and to illustate why such 
complications arise. The major aim however is to present the general tables A(&)(A) .  
We limit ourselves to those irreducible SU( n) representations whose corresponding 
Young diagrams have fewer than seven boxes. This imposes no restrictions on those 
representations commonly considered by model builders. In an appendix we give the 
algorithm employed in constructing these tables so further representations may be 
similarly calculated for. 

Calculating the leading anomaly coefficients is purely an algebraic question and 
there are now several methods for their construction. These are reviewed, for example, 
in Braden (1988b). General expressions for some A,, , (A)  have been derived by many 
authors for certain A and values of k. When A is a totally antisymmetric tensor 
representation of SU( n )  then there are several equivalent expressions that give A,,,(A) 
for k 6  n (Frampton and Kephart 1983a, b, Okubo and Patera 1983, 1984, Braden 
1988b). Again when A has a diagram of four or fewer boxes or two or less rows or 
columns results also exist (Okubo and Patera 1983). Also for Young diagrams of six 
and fewer boxes Tosa and Okubo (1988)t give separate expressions for A(3)(A),  A(,,(A) 
and A,,,(A) as a polynomial in n which are reproduced by our general polynomials. 
Our calculational method was outlined by Braden (1988b) and provides an easily 
implemented algorithm for constructing the polynomials A ( k ) ( A )  simultaneously for 
all k s  n t .  This method is easily described. Any irreducible representation of a Lie 
algebra g has weights which decompose into orbits of the Weyl group of g. For each 
such orbit we can construct a simpler polynomial a ( & ,  from which we reconstruct A(&,  
by summing over the orbits. This will be illustated in the next section. 

2. Calculating A(k) (A)  for 2 < k < n 
We will now describe how to calculate the anomaly coefficients and give some examples 
of such a calculation. The results of this section are given in the tables 1-3. 

Let us recall there is a one-to-one correspondence between the finite-dimensional 
unitary irreducible representations of SU( n) and the dominant weights of its weight 
lattice A+.  Also with each dominant weight we may associate a Young diagram 
( I )  = ( I , ,  1 2 , .  . . , I N )  with N rows of length I ,  f 0 (for U ( n )  N s n while for S U ( n )  the 

t Note that in these authors’ notation A ( A l ( A ) =  Q , k , ( A ) .  
$We take this opportunity to correct some typographical errors in this reference 
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Table 1. The leading anomaly coefficients A(,) (A)  for SU(n) for Young diagrams A of up 
to five boxes. 

A 

m n + 2k-' 

n -2k-I 0 

EP 
un $n2+$n(2'  +1)+3"-' 

"2 - 3'-1 

i n 2 - $ n ( 2 '  + 1 ) + 3 k - '  

( 2 n 3 +  3n2(2k + 2 )  + n(4.3' + 3.2k + 4 )  + 3.4") /  12 

€I 
[III] 

(2n3+n2(2k + 2 ) - n 2 k  - 4 k ) / 4  

( 2 n 3  - r 1 ( 2 . 3 ~  -3 .2k + 2 ) ) / 6  
EP 
H 

( 2 n 3 - n 2 ( 2 A + 2 2 ) - n 2 h + 4 h ) / 4  

(5n4+10n3(2"+3)+5n2(4.3'+6.2'  +11)+10n(3.4h+22.3 '+2.2k+3)  
+24.Sk) /51  

( 5 n 4 + 5 n 3 ( Z k  + 3 ) + 5 n 2 ( 3 '  + 2 ) - 5 n ( 3 ' + 2 ' )  -6 .SL) /3O 

( 5 n 4 + 2 n 3 ( 2 '  + 3 ) -  n'(4.3' -6 .2k + 5 ) - 2 n ( 3 . 4 '  - 2 . 3 k  - 2 . 2 ' + 3 ) ) / 2 4  

( 5 n 4 - 5 n 2 ( 2 . 2 '  + 1 ) + 4 . 5 ' ) / 2 0  

( 5 n 4 - 2 n 3 ( 2 ' + 3 ) - n 2 ( 4 . 3 A  - 6 . 2 ' + 5 ) + 2 n ( 3 . 4 h - 2 . 3 '  - 2 . 2 ' + 3 ) ) / 2 4  

( 5 n 4 - 5 n 3 ( 2 '  + 3 ) + S n 2 ( 3 '  + 2 ) + S n ( 3 ' + 2 ' ) - 6 . 5 ' ) / 3 0  

( 5 n 4 - 1 0 n 3 ( 2 ' + 3 ) + 5 n 2 ( 4 . 3 ' + 6 . 2 '  +11)-10n(3.4 '+2.3 '+2.2h+3)  
+24.5'))/5! 

inequality is strict). Explicitly if A ,  is a fundamental weight it has Young diagrams 
given by 4 = 1 for j s  i and zero otherwise. Let us denote by lA the Young diagram 
associated with a weight A and V(A) the set of weights of an irreducible representation 
with highest weight A. We set m A ( p )  the multiplicity of the weight p in V(A); these 
may be calculated by several recursions and are extensively tabulated (Bremner er a1 
1985). 

With this notation we construct A ( k ) ( A )  out of simpler functions q k ) ( p )  in the 
manner already described: 
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Table 2. The leading anomaly coefficients A , , , ( A )  for S U ( n )  for Young diagrams A of six 
boxes. 

A 4 ' J A )  

E F  
BPJ 

~6n5+15nJ(2~+4)t10n'((4.3'+9.2'+21)+15n2(6.4' '+8.3"+11.2'+20) 
~ 2 n ( 7 2 . 5 '  +45.4' +40.3' +45.2 '+72)+ 120.6k)/6! 

(6n '+9n4(2 '  +4)+2n3(8.3 '  +9.2' +33)+9n2(2.4 '  - 2 ' + 4 ) - 2 ~ ( 9 . 4 '  +8.3" +9.2') 
-24.6'))/ 144 

16ns+5n4(2 '  +4)+10n3(2 '  + 1)-5n2(2.4 '  -3 .2 '+4)-2n(8.5 '  -5 .4 ' -5 .2 '+8)) /80 

(6n5+3n4(2 '  +4)+2n3(2.3 '  -9.2' -3) -3n2(4 .3 ' t7 .2 '  t 4 ) + 8 n 3 ^  -12 6')/72 

( 6 n ' t  3n4(2' + 4 )  - 2n3(4.3" -9.2' + 3 )  - 3 d 6 . 4 '  - 8.3' + 2' + 4 )  
-2n(9.4'' - 16.3' +9.2 ' ) ) /144 

(6n5-5n3(3 '+3)+n(9 .5 '  -10.3 '+9)) /45 

(6n5-3n4(2 '  +4)-2n3(4.3" -9.2A +3)+3n2(6.4 '  -8.3' +2"  + 4 )  
-2n(9.4' -16.3" +9.2")) /144 

( 6 n 5  -5n"(2 '+4)+  lOn'(2' + 1 j +5t1'(2.4~ -3.2" + 4 )  - 2 n ( 8 . 5 '  -5.4' -5 .2 '+8)) /80 

(6n' -9n4(2' + 4 )  + 2n3(8.3' +9.2A +33)  -9n2(2.4' - 2'' + 4 )  

P 
r - 2n(9.4" +8.3' +9.2" +24.6' )/ 144 

(6n5-15n4(2'+4)+10n'(4.3'+9.2' +21)-15n'(6.4'+8.3' + 11.2'+20) 
+2n(72.5" +45.4k +40.3' +45.2" +72)-  120.6"))/6! 

In an  appropriate basis rn, ( p )  is an  upper diagonal matrix with integer entries. Finally 
weneed  ( f o r ( l , ) = ( ~ l , ~ ~ , . . . , l ~ ) )  

The notation is as follows. The final sum means we sum over distinct choices of p 
elements xi from (x , ,  . . . , xN) and then evaluate this by substituting the corresponding 
I,. Finally 

/Orbit p i ( n  - N ) !  
n !  

K ,  = (2.3) 

If  we write ( l w  ) = ( p ; ~ ,  p?, . . . , p ? , )  where p ,  > p z  > . . . > ps  > 0 then K~ = 
1 / ~ ,  !T* ! . . . T ,  !. Expression ( 2 . 2 )  may be obtained from formulae given in Braden 
(1988b); this is done in appendix A while appendix B describes a simple recursive 
algorithm for its implementation. Tables 1-3 summarise the results of calculating 
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Table 3. The leading anomaly coefficients A,, , (A)  for S U ( n )  for Young diagrams A of 
seven boxes. 

A 

(7n6+21n5(2' +5)t35n4(2.3 '  +6.2'+17)+105n3(2.4' 14.3' '  t 7 . 2 h  +15)  
+ 14n2(36.5'' +45.4" +55.3, +75.2, + 137) 
+84n(10.6k+6.5'+5.4k+5.3'+66.2'+10)+720.7') /7!  

(7n6+ 14n5(2' + 5 )  + 2.2, + 7) +70n3(4' +3' + 2' + 5 )  
+7n2(12.5'; -5.3'' -10 .2k+24)-14~(6 .5k+5.4k+5.3k+6.2k)-120.7 ' ) /840  

(7n6+9n5(2"+5)+5n4(2.3 '  t6 .2k+17)+15n ' (3 .2 '+1)  
-2n2(18.5' +5.3' -30.2"+46)- 12n(5.6' - 3 S k  -3.2'+5))/360 

( 7 n b + 7 n s ( 2 ' + 5 ) + 7 n 4 ( 2 . 3 ' - 2 . 2 '  t5 )+7n3(2 .4 '  -4.3' -13.2'' - 5 )  
- 14n2(3.4' +3'+5.2' +3)+28n(4 '  +3')+48.7'')/336 

( 7 n 6 + 6 n 5 ( 2 ' + 5 ) - 5 ~ 4 ( 3 h - 6 . 2 ' - 5 ) - 3 0 ~ 3 ( 4 k - 3 '  - 2 ' + l )  
- n'(36.5, -65.3" +30.2' +32)  -6n(6.5' -5.4' -5.3' +6.2'))/360 

(7n6+3n5(2 '+5) -n4(2 .3 '+6 .2 '+17) -3n3(2 .4k+4 .3 '+2~+13)  
+2n2(9.4' - 11.3'+3 2'' t 5 ) +  12n(2.6' -4 ' -3 '+2)) /144 

(7n6+ n5(2" + 5 )  -5n4(2.3' -2.2' -1 -5)  -5n3(2.4" -4.3k t 5 . 2 "  + 1)  
+2n2(12.5' -15.4h t5 .3 ' -5 .2 '+9)+4n(6.5 '  -5.4'-5.3't6.2'))/240 

(7n6+ 7n4(3' -6.2' - 5 )  + 7n2(  1 1.3, +6.2' + 4 )  - 36.7')/252 

(7n6-  n'(2'' + 5 )  - 5n4(2.3, -2.2' + 5 )  + 5n3(2.4' -4.3, + 5.2' + 1 )  
+2n2(12.5' - 15.4" +5.3' -5.2'+9) -4n(6.5' -5.4' -5.3'+6.2'))/240 

(7n6-3n5(2' + 5 )  - n4(2.3' +6.2'. + 17)+3n3(2.4' +4.3, +2" + 13) 
+2n2(9.4' -11.3'' f 3 . 2 "  + 5 ) -  12n(2.6, -4' -3 '+2)) /144 

( 7 t 1 ~ - 6 n ~ ( 2 ' + 5 ) - 5 t 1 ~ ( 3 ' - 6 . 2 ~  -5)+30n3(4 ' -3 ' -2 '+ l )  
-n2(36.5, -65.3' +30.2 '+32)+6n(6.5 '  -5.4' -5.3' +6.2"))/360 

( 7 n 6 - 7 n s ( 2 ' + 5 ) + 7 n 4 ( 2 . 3 ' - 2 . 2 '  t5 ) -7n3(2 .4 '  -4.3' -13.2' - 5 )  
-14n2(3.4' +3' +5.2h+3)-28~(4 '+3 ' ' )+48.7 ' ) /336 

(7n6-9n5(2' +5)+5n4(2.3 '+6.2 '  t 17)-15n3(3.2' +1)-2t1~(18.5 '+5.3 '  -30.2'+46) 
+ 12n(5.6' -3.5h -3.2'+5))/360 

(7n6- 14n5(2' + 5 ) + 3 5 r 1 ~ ( 3 ~  +2.2 '+7)  -70n3(4' +3 '  + 2 '  + 5 )  
+7n2(12.5' -5.3' -10.2'+24)+14n(6.5'+5.4'+5.3'  +6.2')-120.7')/840 

( 7 n 6 - 2 1 n 5 ( 2 k + 5 ) + 3 5 ~ 4 ( 2 . 3 h  +6.2' +17)-105n3(2.4' t4 .3 '+7 .2 '  +15)  
+14n2(36.5' +45.4' +55.3' +75.2'+ 137) 
-84n(10.6'+6.5'+5.4' +5.3' +6.2'+10)+720.7')/7! 
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Example 1 .  For representations with Young diagrams with two boxes equation (2.1) 
yields 

This is well known for general k. 

Example 2. We repeat the calculation this time for Young diagrams of three boxes 
noting now that Ka,,,b = K,,b,b = f (  b # U )  and Ka,a.a = i .  Then 

3 h  

=(A ;I( n(2k+1)-3 ' :  
0 0 1 n * / 2 - n ( 2 k + 1 ) / 2 + 3 k - 1  

n(  n + 1) /2+ n2k- '  + 3k-1 

n ( n  - 1 ) / 2 -  n 2 k - 1 + 3 k - 1  

n2 - 3'-' 

This reproduces the results of Okubo and Patera (1983). 

3. The unstable range: an example 

Although not relevant for the calculation of perturbative anomalies this section is 
included to iliastrate what is happening in the unstable range k > n. Such calculations 
are however germane for global anomalies (Braden 1988a, b). 

The general algebraic problem we are discussing when writing (1.1) is the decompo- 
sition of a group invariant polynomial into a given basis of invariant polynomials, 
here traces and their powers of a given fundamental representation. For any given 
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simple Lie group this basis is finite dimensional and a possible basis is {TrV(A,lFY~} 
where vl are the exponents of the Lie group. In ?he case of SU(n) with A, the 
n-dimensional representation, we have vi E {2,3,. . . , n} and the algebraic question is 
one of expressing a symmetric polynomial in terms of the symmetric power functions 
s k  = X;=, x i .  The unstable range corresponds to expressing TrviA0 F k  in terms of our 
basis when k is larger than the maximum exponent of the group. Clearly in this case 
there can be no leading anomaly coefficient as defined. 

To be concrete let us take the example of SU(3) which has fundamental weights 
A ,  and A ,  which we associate with 3 and 3 respectively. The Young diagram of an 
SU(3) irreducible representation with highest weight n , A ,  + n2h2 and lF = ( n ,  + n,, n,). 
The algebraic problem we have reduces to finding the coefficients A(m,,)(A) in the 
expression 

k 

c pk= 2 m + 3 n = k  c A ( m , n ) ( A ) (  p i €  c V ( A l )  p:)"'( 1 2 2 s  c V ( A i )  p;)" .  
(3 .1)  

p E V l A J  

Our general approach outlined in the previous section has been to rewrite this as 

where 

whence 

In calculations with SU( n )  it is natural to express the weight space as the hyperplane 
o fR"  orthogonalto l = ( l / n ) ( x , + x , + .  . .+x,). Onthissubspacewehave{x,, . . . , x , }  
being the set of weights of V ( h , )  and the Weyl group acts as the symmetric group S,. 
When this is the case we have X p s v ( A l ) p  =E;=, x : = s k  and because we restrict 
attention to the hyperplane perpendicular to 5 then s, = 0 on this space. 

For the particular case of su(3) and p = n,Al + n2h2 this means we wish to calculate 

k 

= C a ( m . n ) ( p ) s T s ; *  
2 m + 3 n = k  

To calculate we may proceed as follows. First 

Upon noting 
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then 

where K,  = 112 when 1, = l2  or l2  = 0, and K~ = 1 otherwise. (Note so = 3 and s, = 0, i < 0.) 
It is at this stage of the calculation we can see the difference that arises when k > 3. 

In this range sk is a function of s2 and s3 and we must make this explicit. In the stable 
range we can just read off the leading anomaly coefficient directly and this leads to 
(2.2). For su( n )  it is straightforward to recursively define the sk( k > n) in terms of the 
lower sk. To do  this introduce the elementary symmetric functions ek by n,,, ( 1  + x , t )  = 
EkaO r ek.  Then we have Newton's formula k 

sk = elsk-!  - e 2 s k - 2 + e 3 s k - 3 - .  . . + ( - f ) " - ' e , , ~ ~ - ~  

where s, = O( i < 0) and so = n. By expressing the e, in terms of the power symmetric 
functions we have the desired recurrence. 

for k 2 4. In particular s4 = fs:, s5 = i s 2 3 3  and s6 = gs, + p 2 .  
For the su(3) example we find s1 = e ,  = 0, s2 = - 2 e 2 ,  s3 = 3e3 and sk = f s 3 s k - 3  + t S Z S k -  

Using these results we find for example that 

1 2  1 3  

~ ~ ~ ( p )  = K l r ( n : + 2 n : n 2 + 3 n : n : + 2 n l n : +  n:)s: = a,2 ,0 , (p)s : .  (3.6) 

Now for su(3) the multiplicities m A ( p )  have a particularly simple structure (Antoine 
and Speiser 1964). If A = mA, + nAz = ( m ,  n) and taking m 3 n with no loss of generality 
then 

( i )  m A ( p ) = k + l , O s k s n  for weights p = ( n , , n 2 )  of the form: ( m - k ,  n - k ) ;  
( m  - k + j ,  n - k - 2 j )  and j :  1 , .  . . , [Fk]; ( m  - k-2j ,  n - k + j )  and j :  1 , .  . . [ f (m - k ) ] .  

(ii) mA ( p )  = n + 1 for weights of the form: ( m  - n - 3r - 2s, s )  where r :  1 ,  . . . [f( m - 
n ) ]  and s:O,. . . [ i ( m  - n  - 3 r ) l .  

Utilising this information we may perform the summation (3.4) to obtain for 
k :  2 , .  . . 5 ,  

All ,o) (m,  n) = &(m + l ) ( n  + l ) ( m  + n +2)[m2+ n 2 +  mn + 3 m  + 3 n ]  

A ~ o , l l ( m ,  n )  = & ( m  - n ) ( m +  l ) ( n +  l ) ( m +  n + 2 ) [ 2 m 2 + 2 n 2 + 5 m n + 9 m + 9 n + 9 ]  

A(2,01( m, n )  = &A, m, n)[2m2 + 2n' + 2mn + 6m + 6n - 31 

A ( l , l b ( m ,  n )  =&Alo,l ,(m, n ) [ 4 m 2 + 4 n 2 + 4 m n + 1 2 m +  12n-91. 

The first three of these expressions may be obtained from the work of Okubo (1982) 
and Okubo and Patera (1983) upon noting the dimension of V(A) is given by 
dim(m, n) = i ( m  + l ) ( n  + l ) ( m  + n + 2 ) .  

(3 .7)  

4. Discussion 

Because tables 1-3 are intended for those wishing to know simply the anomaly content 
of su(n)  gauge theories we will give some examples of their application. Before doing 
this, however, we note several non-trivial checks of these tables. If 1 denotes the 
complex conjugate representation to A and A T  the representation with diagram conju- 
gate (i.e. interchanging rows and columns) to A then A,,,(h) = ( - l )kAlk l (A)  and the 
formula for A(k,(AT) may be obtained from that of A , k , ( A )  by substituting n + - n  u p  
to an overall sign ( - l ) 'A ' - l  where 1A1 is the number of boxes making u p  A. These 
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observations were described in Okubo and Patera (1983). Together these provide 
powerful checks on the 

Take for example A I  diagrams are symmetric about their 
diagonal whence A 1  is A 2  an odd polynomial. Further, 
for n = 3  we have A 2 = i 1 .  Thus for 2 6 k 6 3  and n = 3  we must have A ( k ) ( i l ) =  
( - I ) ~ A ( ~ , ( A ~ ) ,  that is 8-3k+3.2k- '  = ( - l )k(18+5k-1 -9.2k-'). This illustrates some of 
the non-trivial relations A(k,(A ) must satisfy. 

To illustrate the use of our tables we consider the example of an su(5) theory in 
eight dimensions, hence we are interested in A(5)(A). This example has been chosen 
simply because it has been discussed by several authors and we may compare various 
results. We will follow the labelling conventions of McKay and Patera (1981) which 
also includes the su(5) 1 su(4) reduction 

183 + m + B + o .  
40 20 10 6 4 

Comparing this reduction with that given in Elitzur and Nair (1984) we see their 
conventions interchange the 40 and 40 of our adopted labelling and similarly the 35 
and 35. Our tables yield 

A(,,@ = -1 1 A , , , ( D )  = 21 A,,,@) = -56 

Together with A(5,( ) = 1 these reproduce the results of these authors?. Comparison 
with the table of Holman and Kephart (1986) however reveals some discrepancies, 
the simplest of which to check is for the 70-dimensional representation We have IT 

dim 5 0 2 4  = 70 + a + 5 
4 5 ,  5 ~ 0 + 2 4 ~ 1  = 89 + -66 + 1 

where we have used the property of the leading anomaly coefficients (Frampton and 
Kephart 1983a, Okubo and Patera 1983) 

this direct calculation confirming the tables. 
Hopefully this example illustrates some of the utility of our tables and will provide 

a helpful tool to those wishing to simply calculate anomaly cancellation in non-vector- 
like theories. A computer file with these tables may be e-mailed to any reader who 
desires them. 
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Appendix A 

Here we will derive expression (2.2) for a ( k ) ( + ) .  We begin with equation (3.45) of 
Braden (1988b), 

where F N (  k, j )  is a polynomial defined in the reference cited with the property 
FN ( k ,  j )  = 0 when j > k. Because we are working in the stable range, k S n, the vanishing 
property of F N ( k , j )  means we can replace the summation in (Al )  by XT=l. In these 
formulae N is the number of rows of l p ,  the Young diagram associated with p. We 
have lOrbit(p)l= K , n ! / ( n  - N ) !  where K~ was defined by (2.3). Now using expression 
(3.47) of Braden (1988b) for F,(k,  j )  these substitutions yield 

where the final summation is over distinct choices of j - r variables from { x I , .  . . , x N } .  
Letting p = j  - r and rearranging some of the factorials then gives 

and the result follows from 

Appendix B 

This contains an algorithm for generating the polynomials q k ) ( A )  using a symbolic 
manipulation language such as REDUCE. The only term in (2.2) which is non-trivial 
to translate is 

c ( X I + .  . . + x J k [ l p ] .  (B1) 
This can be described as a sum over all distinct ways of selecting p components of b. 
By distinct we mean that li is distinct from l, when the labels i, j are different, even if 
the values of the components themselves are equal. So choosing a particular component 
is equivalent to choosing its label and we can write the ith choice as xi  = Is, for 1 s si s N. 
The labels ( sl ,  . . . , s,,) define the components of l& to be chosen and form an unordered 
set as different orderings do not correspond to distinct selections. We must find an 
exhaustive method of selecting these labels, and we will develop a recursive algorithm 
to do so. The problem is equivalent to finding all the distinct patterns when placing 
p crosses in a row of N boxes. Let the boxes be numbered 1 to N from left to right. 
We suppose j -  1 crosses have already been placed and that in previous selections 
patterns with these crosses to the left of their present positions have all been considered. 
Then the next cross must be placed in a box to the right of the previous cross or else 
a pattern will be repeated. Now s, is the number of the box in which the j th  cross is 
to be placed and so we have 

(B2) s,- I + 1 s s, d N - p + j .  



SU( n )  anomaly generating functionals 675 

The upper limit is due to the restriction that there must be enough room to the right 
of the j t h  cross for the remaining crosses. The first cross can be placed as far to the 
left as possible, but the upper limit still applies so 1 6 s, 6 N - p  + 1. 

Inequality (B2) defines a ‘node’ in a tree-like structure with each value of s, causing 
a branch in that tree. At the end of each branch is another node, and so on. The 
number of branches at each node is N - p + j - s,-, ; hence the tree grows very quickly 
initially, with less branches later on. This can be coded very succinctly into a procedural 
function sum which returns the sum (Bl ) :  

define function sum ( p ,  N, sminrj, X )  

if j = p + 1 then return X k  

else return Nf+’  sum ( p ,  N ,  s + 1, j + 1, x + I , )  
s=sm,n  

end. (B3)  
This would be called by sum ( p ,  N, 1 ,  1,O). When sum is called with a given j the 
value smin is the lower limit of s, as defined by the inequality (B2). In the third line 
(which is the node) the sum forms all the branches at that node. Note that the 
expression xl + . . . + x p  is built up in X .  The final node occurs in the second line where 
the expression (x, + . . . + x,)~ is returned to the previous node. And finally calling the 
function from outside with s and j set to one, will start with s1 running from 1 to 
N - p + l .  
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